Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

2,2'-Dimethyl-3,3'-bis(methylsulfanyl)-5,5'-bis(1-benzofuran)

Hong Dae Choi, ${ }^{\text {a }}$ Byoung Won Kang, ${ }^{\text {a }}$ Pil Ja Seo, ${ }^{\text {a }}$ Byeng Wha Son ${ }^{\text {b }}$ and Uk Lee ${ }^{\text {b }}$ *

${ }^{\text {a }}$ Department of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-ku, Busan 614-714, Republic of Korea, and ${ }^{\text {b }}$ Department of Chemistry, Pukyong National University, 599-1 Daeyeon-3dong Nam-ku,
Busan 608-737, Republic of Korea

Correspondence e-mail: uklee@pknu.ac.kr

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.009 \AA$
R factor $=0.103$
$w R$ factor $=0.214$
Data-to-parameter ratio $=18.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]The title compound, $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{~S}_{2}$, was obtained from the reaction of $4,4^{\prime}$-biphenol with α-chloro- α-(methylsulfanyl)acetone in the presence of zinc chloride. The interplanar dihedral angle between the two 1-benzofuran groups is $39.2(2)^{\circ}$. The structure is stabilized by $\pi-\pi$ stacking and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions.

Comment

Bisbenzofuran derivatives have attracted attention because of their chemical properties and application to photonic devices, and some have been studied by X-ray diffraction methods (Rodier et al., 1994; Liao et al., 2003; Yamaguchi \& Irie, 2005). A bisbenzofuran structurally related to disodium cromoglycate, which is useful against asthma, has also been prepared (Sunder \& Peet, 1980).

We report here the crystal structure of the title bisbenzofuran compound, (Ia) (Fig. 1 and Table 1). Both 1benzofuran groups are planar, with mean deviations from the least-squares planes of $0.009(\mathrm{C} 1-\mathrm{C} 8 / \mathrm{O} 1)$ and $0.013 \AA(\mathrm{C} 11-$ $\mathrm{C} 18 / \mathrm{O} 2$). The interplanar dihedral angle between the two 1 benzofuran groups is $39.2(2)^{\circ}$. We predicted two possible isomers for this structure, ($\mathrm{I} a$) and ($\mathrm{I} b$). The actual structure was confirmed as ($\mathrm{I} a$), with the methyl groups of the methylsulfanyl substituents pointing in opposite directions with respect to the overall molecular plane. The S atoms are 0.116 (7) and 0.036 (7) \AA out of the C1-C8/O1 and C11-C18/ O 2 planes, respectively.

Fig. 2 shows the aromatic $\pi-\pi$ stacking and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions that stabilize the packing in the crystal structure.

Figure 1
A view of the structure of ($\mathrm{I} a$), with 30% probability displacement ellipsoids.

Figure 2
A packing diagram for $(\mathrm{I} a)$, with $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions drawn as thin dotted lines and $\pi-\pi$ interactions shown as thick dotted lines. $C g 1$ is the centroid of the $\mathrm{C} 1-\mathrm{C} 3 / \mathrm{C} 8 / \mathrm{O} 1$ ring, Cg 2 is the centroid of the $\mathrm{C} 3-\mathrm{C} 8$ ring and $C g 3$ is the centroid of the C13-C18 ring [Symmetry codes: (i) $-x$, $2-y, 2-z$; (ii) $1-x, 2-y, 2-z$.]

The ring centroid separations $C g 1 \cdots C g 1^{\mathrm{i}}$ and $C g 1 \cdots C g 2^{\mathrm{ii}}$ are 3.608 (4) and 3.746 (4) A , respectively, clearly indicating $\pi-\pi$ stacking interactions [Cg1 is the centroid of the $\mathrm{C} 1-\mathrm{C} 3 / \mathrm{C} 8 / \mathrm{O} 1$ ring and Cg 2 is the centroid of the $\mathrm{C} 3-\mathrm{C} 8$ ring; symmetry codes: (i) $-x, 2-y, 2-z$; (ii) $1-x, 2-y, 2-z]$. In addition, $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions further stabilize inversion-related dimers, with $\mathrm{H} 10 A \cdots C g 2^{\mathrm{i}}$ and $\mathrm{H} 10 B \cdots C g 3^{\mathrm{ii}}$ distances of 2.88 and $3.11 \AA$, respectively (Cg 3 is the centroid of the C13-C18 ring).

Experimental

The title compound was prepared by a procedure previously used for substituted 1-benzofurans (Choi et al., 1998) and naphtho[b]furans (Choi et al., 1999). Zinc chloride ($680 \mathrm{mg}, 5.0 \mathrm{mmol}$) was added at room temperature to a stirred solution of α-chloro- α-(methyl-
sulfanyl)acetone ($693 \mathrm{mg}, 5.0 \mathrm{mmol}$) and $4,4^{\prime}$-biphenol (466 mg , 2.5 mmol) in dichloromethane (30 ml) and tetrahydrofuran (5 ml), and stirred for 40 min . The mixture was quenched with water and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated in vacuum. The residue was purified by column chromatography (hexane-ethyl acetate $4: 1$) to afford the title compound in 26% yield. Crystals suitable for X-ray diffraction analysis were grown by slow evaporation of a benzene solution [m.p. 394-395 K; $R_{\mathrm{F}}=0.82$ (hexane-ethyl acetate, 4:1)].

Crystal data

$\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{~S}_{2}$
$V=883.5(7) \AA^{3}$
$M_{r}=354.46$
Triclinic, $P \overline{1}$
$a=7.830$ (4) A
$b=8.695$ (3) \AA
$c=14.046$ (6) \AA
$\alpha=78.37(3)^{\circ}$
$\beta=73.94$ (4) ${ }^{\circ}$
$Z=2$
$D_{x}=1.332 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.31 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Plate, colourless
$0.21 \times 0.12 \times 0.03 \mathrm{~mm}$
$\gamma=76.38(3)^{\circ}$

1942 reflections with $I>2 \sigma(I)$
$\theta_{\text {max }}=27.5^{\circ}$
3 standard reflections frequency: 60 min intensity decay: 3.4%
4038 independent reflections

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0295 P)^{2}\right. \\
& \quad+2.2293 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.26 \text { e } \AA^{-3} \\
& \Delta \rho_{\min }=
\end{aligned}-0.29 \mathrm{e}^{-3} \AA^{-3} .
$$

Table 1
Selected geometric parameters ($\AA \AA^{\circ}$).

S1-C1	$1.741(6)$	O1-C3	$1.378(7)$
S1-C9	$1.783(7)$	O1-C2	$1.399(7)$
S2-C11	$1.746(7)$	O2-C13	$1.377(8)$
S2-C19	$1.804(9)$	O2-C12	$1.398(8)$
C1-S1-C9	$100.8(3)$	C11-S2-C19	$101.4(4)$

All H atoms were positioned geometrically in ideal positions and refined using a riding model, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ for aromatic and $0.96 \AA$ for methyl H atoms, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for aromatic H atoms or $1.5 U_{\mathrm{eq}}(\mathrm{C})$ for methyl H atoms. The crystal used for data collection was very small and weakly diffracting. This accounts for the relatively high R factor and standard uncertainties reported here.

Data collection: STADI4 (Stoe \& Cie, 1996); cell refinement: STADI4; data reduction: X-RED (Stoe \& Cie, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97.

References

Brandenburg, K. (1998). DIAMOND. Version 2.1. Crystal Impact GbR. Bonn, Germany.
Choi, H. D., Seo, P. J. \& Son, B. W. (1998). J. Korean Chem. Soc. 42, 719-722.

organic papers

Choi, H. D., Seo, P. J. \& Son, B. W. (1999). J. Korean Chem. Soc. 43, 237240.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Liao, Y., Fathi, R. \& Yang, Z. (2003). Org. Lett. 5, 909-912.
Rodier, N., M'Saddek, M., Rammah, M. \& Ciamala, K. (1994). Acta Cryst. C50, 1173-1176.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany
Stoe \& Cie (1996). STADI4 (Version 1.09) and X-RED (Version 1.09). Stoe \& Cie, Darmstadt, Germany.
Sunder, S. \& Peet, N. P. (1980). J. Heterocycl. Chem. 17, 1117-1118.
Yamaguchi, T. \& Irie, M. (2005). J. Org. Chem. 70, 10323-10328.

[^0]: © 2006 International Union of Crystallography All rights reserved

